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Brief history of 
RNA-seq .. 
differential 
expression 

analyses 


1.  Map the reads to 
reference sequences 

2.  “Count” reads that 
map to genes 
(quantify) 

3.  Compute DE 
Statistics 

Zeng & Mortazavi, Nature Immunology, 2012 

Zeng & Mortazavi, Nature Immunology 2012

•  Quantification & differential expression 

•  Novel txp discovery 
• reference-based 
• de novo 

• Variant detection  
• Genomic SNPs 
• RNA editing

Uses of  RNA-Seq are manifold

Whole transcriptome analysis

• What is dynamic & changing over time (as disease progresses)?
• What is tissue specific (in fetal development but not after)?
• What is condition specific (under stress conditions vs. not)?



Sequencing Reads

align to ref.
de novo assembly

txp. identification

quantification

pre-proc. pre-proc.

DE, Alternative Splicing, etc.

“Higher-level”  
analysis

reference-based

align to assembly

de novo

Today



In addition to new data, re-analysis of existing experiments often 
desired: In light of new annotations, discoveries, and 

methodological advancements.

* *

# From Fig 1 of Muir et al.

Short Read Archive @ NCBI 
Currently > 5 petabases of data 

Why do we still need faster analysis?

#



Advocating for analysis-efficient computing

• Compute only the information required for your analysis; ask what information 
you need to solve your problem, not what output current tools are generating

I’ll provide some (hopefully) compelling examples:

• Salmon: Fast, state-of-the-art quantification using quasi-mapping, dual-
phase inference & fragment eq. classes

• RapClust: Fast, accurate de novo assembly clustering using quasi-
mapping & fragment eq. classes

We believe these ideas are general, and can be applied to many problems 

• RapMap: Read alignment → quasi-mapping (get “core” info much faster)

• Often the efficiency of the analysis is related to the size of the (processed) 
data’s representation

• Not all analyses require such efficient solutions, should concentrate on 
problems where this is actually needed.



Advocating for analysis-efficient computing
• Compute only the information required for your analysis; ask what information 

you need to solve your problem, not what output current tools are generating

I’ll provide a (hopefully) compelling example:

• Salmon: Fast, state-of-the-art quantification using quasi-mapping, dual-
phase inference & fragment eq. classes

• RapClust: Fast, accurate de novo assembly clustering using quasi-
mapping & fragment eq. classes

We believe these ideas are general, and can be applied to many problems 

• RapMap: Read alignment → quasi-mapping (get “core” info much faster)

• Often the efficiency of the analysis is related to the size of the (processed) 
data’s representation

• Not all analyses require such efficient solutions, should concentrate on 
problems where this is actually needed.

Boiler is also a beautiful example of this idea.   

When we have a particular analysis in mind — transcript identification & 
quantification — we can compress data much more aggressively & 
effectively.



https://github.com/COMBINE-lab/RapMapGitHub repository:

RapMap: A Rapid, Sensitive and Accurate Tool 
for Mapping RNA-seq Reads to Transcriptomes

RAPMAP
RAPMAD

RAPLAP

RAPMAT

RAPTAP

http://bioinformatics.oxfordjournals.org/content/32/12/i192.full.pdfPaper:
 (appeared at ISMB 16)

co-authors (students): Avi Srivastava, Hirak Sarkar, Nitish Gupta

I promised to show how we can use this yesterday …

https://github.com/COMBINE-lab/RapMap
http://bioinformatics.oxfordjournals.org/content/32/12/i192.full.pdf


We believe there are many places where this replacement can be 
made.  I’ll discuss one in some depth (and mention a second):

1)Transcript-level quantification 

• Determine abundance of transcripts from a collection of RNA-seq reads. 

• The quasi-mapping information is sufficient to yield estimates as accurate 
as full alignment.  

2)de novo transcript clustering 

• Find groups of related contigs likely from the same transcript / gene 

• Such groups help improve downstream analysis (e.g. differential expression 
testing)

Obviously, alignments are necessary for certain types of analysis (e.g. 
variant detection).

Where might we use quasi-mapping?
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Inference
(e.g. Sailfish)

Given:    (1) Collection of RNA-Seq fragments 
     (2) A set of known (or assembled) transcript  

    sequences 

Estimate:   The relative abundance of each transcript

Question: If we only care about “gene" abundance, can’t we just count the 
number of reads mapping / aligning to each gene?

Answer: No. I’ll show a general argument (and a few examples) why!



First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

Here, a dot of a color means I hit a circle of that color.  
  What type of circle is more prevalent? 
  What is the fraction of red / blue circles?
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You’re missing a crucial piece of information!
The areas!



First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

You’re missing a crucial piece of information!
The areas!

There is an analog in RNA-seq, one needs to know the  
length of the target from which one is drawing to  
meaningfully assess abundance!



Adapted from: Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." Nature biotechnology 31.1 (2013): 46-53.

Resolving multi-mapping is fundamental to quantification

Key point : The length of the actual molecule from which the fragments derive 
is crucially important to obtaining accurate abundance estimates.

Isoform A is half 
as long as isoform B 

true  
fold-change

union-model  
fold-change

0 < 0.32

-0.41 < 0.58

-1 < 0

Condition 1 Condition 2



These errors can affect DGE calls

From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Variants of Salmon

Variants of “counting”

Resolving multi-mapping is fundamental to quantification



From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Can even affect abundance estimation in absence of alternative-splicing 
(e.g. paralogous genes)

Paralogs of

Resolving multi-mapping is fundamental to quantification



Experimental Mixture Read set

sequencing oracle

Pick a transcript t ∝ count * length
Pick a position p on t uniformly “at random”

How do we do something better than “counting”?
Think about the “ideal” RNA-seq experiment . . .



Experimental Mixture

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

How do we do something better than “counting”?



Experimental Mixture

We call these values η = [0.3, 0.6, 0.1] the nucleotide fractions, 
they become the primary quantity of interest

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

How do we do something better than “counting”?



Say we knew the η, and observed a read that 
mapped ambiguously, as shown above. What is 
the probability that it truly originated from G or R?

normalization 
factor

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

Pr {r from G} =

⌘G

length(G)
⌘G

length(G) +
⌘R

length(R)

=

0.6
66

0.6
66 +

0.1
33

= 0.75

Pr {r from R} =

⌘R

length(R)
⌘G

length(G) +
⌘R

length(R)

=

0.1
33

0.6
66 +

0.1
33

= 0.25

Resolving a single multi-mapping read



How to assess “abundance”

RPKM — Reads per kilobase per million mapped reads

TPM — Transcripts per million

FPKM — Fragments per kilobase per million mapped reads

(Estimated) Number of Reads

Useful for visualization / assessment etc.

Don’t use these measures, TPM measures the  
“same thing”, but in a better way.

These are what are used (after normalization) 
for differential expression. Why can’t we use TPM?



https://github.com/COMBINE-lab/salmon

Official website:

GitHub repository:

Salmon provides accurate, fast, and bias-aware 
transcript expression estimates using dual-phase 

inference

http://combine-lab.github.io/salmon/

Transcript Quantification

https://github.com/COMBINE-lab/salmon
https://github.com/kingsfordgroup/sailfish


A probabilistic view of  RNA-Seq quantification

We want to find the values of η that maximize this probability.  
We can do this (at least locally) using the EM algorithm.

observed 
fragments 

(reads)

true read 
origins

nucleotide 
fractions

assumes 
independence 
of fragments

Prob. of selecting 
ti given η

Prob. of generating 
fragment fj given ti

Depends on 
abundance 

estimate

Independent of 
abundance 

estimate

We can safely truncate Pr{ti | η} 
to 0 for transcripts where a 

fragment doesn’t map.



Why does               matter?

Consider the following scenario:

0 200 800

fragment 
length dist.

isoform A

isoform B

200 bp

1000 bp

Aux. model provides strong 
information about origin of a 
fragment!

Prob of observing a fragment of size ~200 is large
Prob of observing a fragment of size ~1000 is very small



dual-phase 
inference

quasi-
mapping

Salmon’s “pipeline”



TranscriptsFragments

1

2

3

4

Reads 1 & 3 both map to transcripts B & E 
Reads 2 & 4 both map to transcript C

A
B
C
D
E
F

We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

Fragment Equivalence Classes



TranscriptsFragments

1

2

3

4

Reads 1 & 3 both map to transcripts B & E 
Reads 2 & 4 both map to transcript C

A
B
C
D
E
F

We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

wji encodes the “affinity” of class j 
to transcript i according to the 
“bias” model. This is P{fj | ti}, 
aggregated for all fragments in a 
class.

Fragment Equivalence Classes



The # of equivalence classes grows with the complexity of the 
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence 
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment 
equivalence classes.

The number of  equivalence classes is small



Transcript inference methods can be very accurate

Results on 20 replicates simulated (RSEM-
sim) from parameters learned from 
NA12716_7 from GEUVADIS. Showing result 
distributions for kallisto1, eXpress2 & salmon3

1: Bray, Nicolas L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525-527. (v0.43.0) 

2: Roberts, Adam, and Lior Pachter. "Streaming fragment assignment for real-time analysis of sequencing experiments." Nature methods  
   10.1 (2013): 71-73. (v.1.5.1)
3: Patro, Rob, et al. "Accurate, fast, and model-aware transcript expression quantification with Salmon." bioRxiv (2015): 021592. (v0.7.0)



Biases abound in RNA-seq data
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Biases in prep & sequencing 
can have a significant effect on the 
fragments we see.

Sequence-specific bias2— 
sequences surrounding fragment 
affect the likelihood of sequencing

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.

1:Love, Michael I., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript 
abundance estimation." bioRxiv (2015): 025767.

Fragment gc-bias1— 
The GC-content of the fragment 
affects the likelihood of sequencing

Positional bias2— 
fragments sequenced non-uniformly 
across the body of a transcript



Sequence-bias models don’t account  for fragment-level GC bias

Accuracy difference can be larger with biased data

Simulated data: 
2 conditions; 8 samples each

• Simulated transcripts across 
entire genome with known 
abundance using Polyester 
(modified to account for GC 
bias)

• How well do we recover the 
underlying relative 
abundances?

• How does accuracy vary with 
level of bias?

joint work with  Geet Duggal, Mike Love, Rafael Irizarry & Carl Kingsford



Accuracy difference can be larger with biased data

joint work with  Geet Duggal, Mike Love, Rafael Irizarry & Carl Kingsford



Recovery of DE transcripts

• set 10% of txps to have fold 
change of 1/2 or 2 — rest 
unchanged.

• How well do we recover true 
DE?

Simulated data: 
2 conditions; 8 replicates each

joint work with  Geet Duggal, Mike Love, Rafael Irizarry & Carl Kingsford

• Since bias is systematic, effect 
may be even worse than 
accuracy difference suggests.

Mis-estimates confound downstream analysis



Recovery of DE transcripts

Accuracy difference can be large with biased data!

joint work with  Geet Duggal, Mike Love, Rafael Irizarry & Carl Kingsford

At the same FDR,  
accuracy differences of  

53 - 450%



Salmon Kallisto eXpress

All transcripts 1,171 2,620 2,472

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE (primary differences 
in sample prep)

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data



Salmon Kallisto eXpress

All transcripts 1,171 2,620 2,472

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE (primary differences 
in sample prep)

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

But this is txp-level DE, and I care only about genes!



Salmon Kallisto eXpress

All genes 455 1,200 1582

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

Effects seem at least as extreme at the gene level 



Salmon and kallisto are FAST

http://www.sbnation.com/lookit/2016/8/12/12463026/katie-ledectky-800m-gold-video-highlights-rio-olympics



Salmon and kallisto are FAST

Consider the following test:

Take all 20 replicates of the RSEM-sim simulated 
data above, treat them as one, giant sample.  This is 
20 samples x 30M paired-end reads = 600 million 
read pairs or 1.2 billion individual reads.
Using 30 threads1: 

  kallisto can process this sample in 20 minutes 
  Salmon can process this sample in 23 minutes

Just aligning  the reads to use e.g. eXpress, 
Cufflinks, RSEM etc. would take dozens of hours.

1: Intel Xeon E5-4600 (2.6GHz)



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to 
represent the RNA-seq process. 

It can be optimized efficiently using e.g. the EM / VBEM algorithm.

but, these efficient optimization algorithms return “point estimates” 
of the abundances. That is, there is no notion of how certain we are 
in the computed abundance of  transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

• Technical variance : If we sequenced the exact same sample 
again, we’d get a different set of fragments, and, potentially a 
different solution. 

• Uncertainty in inference: We are almost never guaranteed to  
find a unique, globally optimal result.  If we started our 
algorithm with different initialization parameters, we might get 
a different result.

We’re trying to find the best 
parameters in a space with 10s to 
100s of thousands of dimensions!



One “issue” with maximum likelihood (ML)

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png (CC BY-SA 3.0)

If we started here

We’d end up here

but, if we started here

We’d end up here

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png


Assessing Uncertainty

There are a few ways to address this “issue”

Do a fully Bayesian inference1: 
   Infer the entire posterior distribution of parameters, not just a ML     
   estimate (e.g. using MCMC) — too slow! 

Posterior Gibbs Sampling: 
     Starting from our ML estimate, do MCMC sampling to explore  

 how parameters vary — if our ML estimate is good, and taking  
 advantage of equivalence classes, this can be made very fast. 

Bootstrap Sampling2: 
Resample (from equivalence class counts) with replacement, and re-
run the ML estimate for each sample.  This can be made reasonably 
fast.

2: IsoDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based 
differential gene expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first 
made practical / fast in kallisto by doing the bootstrapping over equivalence classes.

1: BitSeq (with MCMC) actually does this.  It’s very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. 
"Identifying differentially expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.] 

✔

✔

Happy to discuss details / implications of this further.



• finding locations of reads 
(mapping) is slow than necessary 

• alternative splicing  and related 
sequences creates ambiguity 
about where reads came from 

• sampling of reads is not uniform or 
idealized 

• uncertainty in ML estimate of 
abundances

→ Use quasi-mapping

→ Use dual-phase inference 
algorithm

→ Use bias models learned 
from data

Salmon addresses the main challenges of  quantification

→ Use posterior Gibbs 
sampling or bootstraps to 
assess uncertainty



• Speed of inference makes it possible to use bootstraps or 
posterior Gibbs sampling to estimate variance (e.g. how certain 
are we in quantification estimates?).  

• Quasi-mapping means no large, intermediate BAM files sitting on 
disk, or wasting computation time with slow disk I/O. 

• Expressive model means new types of bias can be learned and 
accounted for. 

• Separation of mapping / alignment and inference means Salmon 
can be used with or without existing alignments*. Here I talked 
only about quasi-mapping, but Salmon can use take BAM input 
from an aligner (if you really want!).

Salmon has many other benefits

Many of these improvements (except dual-phase inference) have been 
back-ported to Sailfish, which is still actively developed!

https://github.com/kingsfordgroup/sailfish

https://github.com/kingsfordgroup/sailfish


Thanks!

Carl Kingsford (CMU)

Geet Duggal (CMU / DNAnexus)

Collaborators on Salmon

Mike Love (Harvard / UNC)

Rafael Irizarry(Harvard)



Bonus Slides



https://github.com/COMBINE-lab/rapclustGitHub repository:

RapClust: Fast, Lightweight Clustering of  de novo 
Transcriptomes using Fragment Equivalence Classes 

De novo transcriptome clustering

https://arxiv.org/abs/1604.03250Paper:

https://github.com/COMBINE-lab/rapclust
https://arxiv.org/abs/1604.03250


Uses the fragment equivalence classes discussed above to cluster 
contigs in de novo assemblies.

This leads to improved downstream analysis (e.g. DE calls)

RapClust: clustering contigs in de novo assemblies



Time including quantification (4 threads)

Time excluding quantification

RapClust is fast



RapClust is Fast & Lightweight

Time & Space comparison of RapClust with Corset, for all phases (raw 
reads through quantified clusters — using 4 threads).

Time comparison of RapClust (RC), Corset (CT), and CD-HIT EST (CD) 
for just clustering (using 1 thread).

Not having to output / rely on BAM files means the space footprint of 
RapClust is orders of magnitude smaller than that of Corset



Variation of Information# distance between the true clustering  
and the clustering computed by each method (lower is better).

#: Meila, M. (2007). "Comparing clusterings—an information based distance". Journal of Multivariate Analysis 98 (5): 873–895.

RapClust is accurate

VI Distance RapClust CORSET CD-HIT EST

Chicken 0.127 0.191 2.01

Human 0.712 0.735 1.24

Yeast 0.176 0.178 0.216

F1-Score RapClust CORSET CD-HIT EST*

Chicken 97.17 95.02 13.27

Human 72.23 70.58 23.97

Yeast 46.24 45.40 21.48

F1-Score of correct classification (i.e. co-clustering) of contigs from 
the same gene (higher is better).

*Note: RapClust & CORSET only predict clusters on an expressed subset of the 
data; CD-HIT EST is not directly comparable.



Phase 1: Online Inference

η0 η1 η2 η3 η4 η5

Compute local η’ using ηt-1 & current “bias” model to allocate fragments 

Update global nucleotide fractions: ηt = ηt-1 + at ηʹ

Process fragments in batches:

Update “bias” model
Weighting factor that 

decays over time

• Have access to all fragment-level information when making these updates  
• Often converges very quickly. 
• Compare-And-Swap (CAS) for synchronizing updates of different batches

Place mappings in equivalence classes

* Based on: Foulds et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation. ACM SIGKDD, 2013.

*



mini-batches processed in parallel by different threads

additive nature of updates mitigates effects of 
no synchronization between mini-batches

Give each transcript appropriate prior mass η0 (init.)
For each mini-batch Bt of reads {

For each read r in Bt {

For each alignment a of r {
compute (un-normalized) prob of a using ηt-1, and aux params

normalize alignment probs & update local transcript weights η’ 

update global transcript weights given local transcript 
weights according to “update rule” ⟹

}

}

ηt = ηt-1 +wt ηʹ
}

add / update the equivalence class for read r 
sample a ∈ r to update auxiliary models



Repeatedly reallocate fragments according to current 
abundance estimates & “bias” model until convergence:

# of reads 
assigned to 
transcript i

size of 
equivalence 

class j

reads are allocated ∝ 
current estimate 

weighted by affinity

In practice, we re-estimate the bias terms that depend on the transcript abundances 
(e.g. seq-specific & fragment-GC) intermittently during optimization.

Phase 2: Offline Inference

small # of eq. classes 
means EM rounds are fast!


