
Aligning (& mapping) RNA-seq reads
Rob Patro

Aug. 15, 2016

Postdoc Asst. Prof

About me:

My Uni: My Lab:

Twitter: @nomad421 GitHub: rob-p Website: robpatro.net

* actually, my son, Isaac ;)

Grad student

http://robpatro.net

Grad student Postdoc Asst. Prof

About me:

My Uni: My Lab:

Twitter: @nomad421 GitHub: rob-p Website: robpatro.net

* actually, my son, Isaac ;)

Warning: I am, at heart, a computer scientist. I will
totally nerd-out on algorithms, data-structures,
languages etc. This nerding-out is mostly harmless.
Keep this in mind during my lecture (and if we end up
talking one-on-one).

http://robpatro.net

Brief history of
RNA-seq ..
differential
expression

analyses

1.  Map the reads to
reference sequences

2.  “Count” reads that
map to genes
(quantify)

3.  Compute DE
Statistics

Zeng & Mortazavi, Nature Immunology, 2012

Zeng & Mortazavi, Nature Immunology 2012

• Quantification & differential expression

• Novel txp discovery
• reference-based
• de novo

• Variant detection
• Genomic SNPs
• RNA editing

Uses of RNA-Seq are manifold

Whole transcriptome analysis

• What is dynamic & changing over time (as disease progresses)?
• What is tissue specific (in fetal development but not after)?
• What is condition specific (under stress conditions vs. not)?

Sequencing Reads

align / map to ref.
de novo assembly

txp. identification

quantification

pre-proc. pre-proc.

DE, Alternative Splicing, etc.

“Higher-level”
analysis

reference-based

align / map to assembly

de novo

What is the alignment problem?

d : ⌃|u| ⇥ ⌃|v| ! Z and ✏ (maximum edit distance)

 = { }

li

R

 =
k

T

ri

Given: A collection of sequencing reads, and some
target sequence (e.g. a genome)

Find: For each read, all locations where the read is
within edit distance ϵ of the reference, and
the edits that achieve this distance.

Edit Distance

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

• mutate (replace) a character
• delete a character
• insert a character

Given: Two strings
a = a1a2a3a4...am
b = b1b2b3b4...bn

where ai, bi are letters from some alphabet, Σ, like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

slide courtesy of Carl Kingsford

Another View: Alignment as a Matching

G C G T A T G A G G C T A A C G C

G C T A T G C G G C T A T A C G C

a =

b =
The operations at our disposal

Insertion (into a ~ deletion from b)
Mutation
Deletion (from a ~ insertion into b)

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

When we “delete a” character in a this is the same as inserting the
character “-“ in b. Conceptually, you can think of this as aligning the
deleted character with “-“. Under this model cost(x,’-‘) = cost(‘-‘,x) = gap
for any x ∈ Σ

Representing alignments as edit
transcriptsEdit distance

Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Slide courtesy of Ben Langmead

Representing edits as alignments
prin-ciple
|||| |||XX
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR

misspell
||| ||||
mis-pell
(1 gap)
MMMIMMMM

prin-cip-le
|||| ||| |
prinncipal-
(3 gaps, 0 mm)
MMMMIMMMIMD

prehistoric
 ||||||||
---historic
(3 gaps)
DDDMMMMMMMM

aa-bb-ccaabb
|X || | | |
ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

al-go-rithm-
|| XX ||X |
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI

slide courtesy of Carl Kingsford

Can’t we just test and choose the
best?

f(n,m) =

min(m,n)X

k=0

2k
✓
m

k

◆✓
n

k

◆

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

20 40 60 80 100
length of strings

1020

1045

1070

number of alignments

How many alignments are there?

f(n,m) =

min(m,n)X

k=0

2k
✓
m

k

◆✓
n

k

◆

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

20 40 60 80 100
length of strings

1020

1045

1070

number of alignments

of atoms in the
universe ~1080

Algorithms to the rescue!

Luckily, we can do much better than brute force.

Optimal edit distance can be computed in quadratic time
O(|x|*|y|)1, using algorithms that rely on dynamic
programming.

1: We’ll briefly unpack what this means next

Unfortunately, solving the alignment problem optimally is
often still to slow. But heuristics get us results that are
often very good, and intelligent algorithms and data
structures let us find these solutions fast!

A brief primer on “Big O” notation
To understand what is “feasible” or not, in terms of alignment, we have to think about
how different approaches perform relative to the size of the input.

Computer scientists often use “big O” notation to represent such a notion: i.e.
How does the number of computations required to run an algorithm scale with the
input size?

big O notation asks how algorithms perform asymptotically (in the limit of infinite
input). It is not strictly a measure of performance, but it provides information
relevant to performance.

Let’s consider some examples

A brief primer on “Big O” notation
Consider the following “algorithms”

Algorithm 1:
sum = 0
for elem in L:
 sum += elem

Compute the sum of a list of numbers

Algorithm 2:
sum = 0
for start in [0, length(L)]:
 subsum = 0
 for stop in [start, length(L)]:
 subsum += elem
 sum += subsum

Compute the sum of all subranges of
a list of numbers

How many “steps”

for N = 100

for N = 1000

for N = 10000

for N = 100000

for N = 100

for N = 1000

for N = 10000

for N = 100000

100

1000

10,000

100,000

4,999,950,000

49,995,000

499,500

4,950

A brief primer on “Big O” notation
Consider the following “algorithms”

Algorithm 1:
sum = 0
for elem in L:
 sum += elem

Compute the sum of a list of numbers

Algorithm 2:
sum = 0
for start in [0, length(L)]:
 subsum = 0
 for stop in [start, length(L)]:
 subsum += elem
 sum += subsum

Compute the sum of all subranges of
a list of numbers

How many “steps”

Algorithm 1 is in O(N):
It scales with N

Algorithm 1 is in O(N2):
It scales with N2

Bonus question: What is the exact # of steps?

A brief primer on “Big O” notation
Consider the following “algorithms”

Algorithm 3:
sum = 0
for start in [0, length(L)]:
 subsum = 0
 for stop in [start, length(L)]:
 subsum += elem
 sum += subsum

sum2 = 0
for elem in L:
 sum2 += elem
return sum + sum2

What is the big-O of Algorithm 3?

A brief primer on “Big O” notation
Consider the following “algorithms”

Algorithm 3:
sum = 0
for start in [0, length(L)]:
 subsum = 0
 for stop in [start, length(L)]:
 subsum += elem
 sum += subsum

sum2 = 0
for elem in L:
 sum2 += elem
return sum + sum2

Algorithm 3 is still in O(N2):

As N grows large, N2 dominates N, so the final for
loop contributes negligibly to the total number of
steps. Big-O is only concerned with the highest-
order terms so that e.g.:

 N3 dominates N2 dominates N etc.

What is the big-O of Algorithm 3?

Primer over; back to alignment
So, how is this relevant to alignment?

The best algorithms we have (and like the best that could exist) to
compute the optimal alignment of two strings are quadratic

If we have N reads, each of length ℓ, and the genome is of length
L, then applying the optimal algorithm at each possible position (to
test the edit distance) is O(N·ℓ·L)

Consider a dataset with:
N = 20 x 106 reads
ℓ = 100
L = 3x109 nucleotides

and a processor that can do X = 3 x 109 operations / sec.

You’d wait about (N·ℓ·L) / X = 200,000,000 sec = 6.34 years to
align your reads. If you think a Ph.D. is slow now . . .

Primer over; back to alignment
Note: This analysis is a worst-case scenario, where we apply the most naive
algorithm possible to solve this problem.

Still, solving the alignment problem as stated above takes too long to be used in
practice.

Thus, most tools resort to heuristics — approaches that usually work well, but may
not return optimal results.

Specifically, there may be positions on the genome to which a read can be
aligned with edit distance ≤ ϵ, that are not found (i.e. false negatives). False
positives are also possible, but usually resort from finding sub-optimal alignments
where better ones exist, and rely on a slightly different formulation of the alignment
“problem”.

Keep this in mind as we discuss the methods below.

Phylogeny of Read-Alignment
Aligning (Mapping) NGS Reads

• Aligns RNA-seq reads to transcriptome
• Challenge of high multi-mapping rate
• Example: Bowtie(1/2), BWA(SW/MEM)

TranscriptomeGenome (Spliced)
• Aligns RNA-seq reads to genome
• Challenge of Spliced Alignment
• Example: topHat, STAR, HISAT(1/2)

DNA-sequencing RNA-sequencing

• Base-to-Base Alignment
(CIGAR string)

Aligner Mapper

• NO CIGAR string

RNA-Seq Read Alignment

Given an RNA-seq read, where might it come from?

Two main “regimes”

Align to genomeAlign to transcriptome

Align reads to target genome

Reads spanning exons will be
“split” (gaps up to 10s of kb)

Typically little multi-mapping
(most reads have single
genomic locus of origin)

Can be used to find new
transcripts

Requires target genome

Align reads directly to txps

No “split” alignments —
transcripts contain spliced
exons directly.

Typically a lot of multi-mapping
(80-90% of reads may map to
multiple places)

Can be used in de novo context
(i.e. after de novo assembly)

Does not require target genome

RNA-Seq Read Alignment
Given an RNA-seq read, where does it come from?

Two main “regimes”

Align to genomeAlign to transcriptome

Bowtie

Bowtie 2

BWA

STAR

Top Hat

STAR

HISAT (1&2)

Map Splice

Subread Aligner

Main computational challenge
comes from spliced alignments.

Main computational challenge
comes from ubiquitous multi-

mapping.

… …

HISAT (1&2)

Spliced Alignment

genome

transcript

read pair

x x

exons

Spliced Alignment

back to this

Alight this
x x

Spliced Alignment
x x

Splice junctions might be known, or unknown.

Overlap of read with exon may be very short, sequence is ambiguous (e.g. 10 bases).

Sequence of read might be repetitive in the genome.

STAR
x x

Finds long, exact matches using a suffix array.

Potential alignment represented by a chain of MMPs (Maximum Mappable Prefixes).

Alignment validated and processed using dynamic programming algorithm.

STAR

Figure from: Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

STAR

Figure from: Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Accuracy Speed

Modern RNA-Seq Alignment
When introduced, STAR was much faster than the
alternatives. Recently, some new approaches have been
developed.

HISAT — Hierarchical FM-index
• speed of STAR in an order-of-magnitude less memory
• 1.5-pass alignment to improve align to novel junctions (in STAR now too)

HISAT2 — Hierarchical Graph FM-index
• Improved sensitivity
• Very cool / elegant representation of genome, transcripts (etc.)
• Can align to a population of genomes

Take home: TopHat (1/2) used to be the de facto aligner for RNA-
seq -> genome alignment. Now there are much better solutions.
Also, TopHat 2 has been deprecated in favor of HISAT1.

1: Pertea, Mihaela, et al. "Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown." Nature Protocols 11, 1650–1667 (2016)

Aligning to the transcriptome

What if we know the transcripts ahead of time?

What if we don’t have the target genome (de novo)
txome assembly?

What if there are other transcripts that we know will
be present in our sample, not from the target
organism?

One way to handle such cases is to align directly to
the transcriptome!

Aligning reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Aligning reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Say that colors represent exonic sequence.
Intuitively, from where does the read originate?

No more spliced alignment, but prevalent multi-mapping. Due, in part, to alternative
splicing present in the transcriptome.

Problem: RNA-Seq Read Alignment Mapping to the Transcriptome

What if we don’t need alignment?

Claim: Some (but not all) of the analyses we’re interested in
performing may not actually require the read alignment

How much more efficient may a solution be if we only care
about where and not exactly how a read corresponds to the
reference?

Validation: For a very common analysis, RNA-seq-based
quantification and differential expression testing, we can
replace alignment with mapping with virtually no loss in
accuracy. We’ll talk about Salmon, the tool that uses this idea,
tomorrow.

RNA-Seq Read Alignment
Alignment is fast . . . but not always as fast as our data is big

A single sample may contain 10s of millions of reads

An experiment may consist of many samples
e.g. conditions, time course samples, etc.

Condition A Condition B Condition C Condition D Condition E

Replicate 1 Replicate 1 Replicate 1 Replicate 1 Replicate 1

Replicate 2 Replicate 2 Replicate 2 Replicate 2 Replicate 2

Replicate 3 Replicate 3 Replicate 3 Replicate 3 Replicate 3

Replicate 4 Replicate 4 Replicate 4 Replicate 4 Replicate 4

A single experiment may easily consist of 100s of millions of reads.

For a given fragment, a quasi-mapping specifies the target
where a fragment “matches well”, and the position, and
orientation of the fragment w.r.t the target, but not details of the
alignment.

Relies on a suffix array to compute the Maximum Mappable
Prefix (MMP) and Next Informative Position (NIP) when
mapping a read.

Given a carefully-designed algorithm, quasi-mapping information can be
obtained very quickly.

Concept:

Algorithm:

Quasi-mapping: A stand-in for alignment

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Say that colors represent exonic sequence.
Intuitively, from where does the read originate?

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Say that colors represent exonic sequence.
Intuitively, from where does the read originate?
What about this read?

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Once we’ve seen
enough “orange”, we know
the read must map to txps
with this exon; but which
one(s)?

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Rest of the orange exon is
uninformative — this junction
is the next informative
position.

Mapping reads to a Transcriptome

Transcripts Read

Consider the following scenario:

Rest of the orange exon is
uninformative — this junction
is the next informative
position.

Is there some general/formal way to always find the next informative position
(NIP) when mapping a read? Yes — we do this using the notions of MMP (as in
STAR), and longest common extension (LCE) in the suffix array.

Note: This idea (NIP) shares motivation with the k-mer “skipping” of pseudoalignment1, though there are
differences in the results themselves and in how the information is obtained.
1:Bray,N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotech., 34(5), 525–527

https://github.com/COMBINE-lab/RapMapGitHub repository:

RapMap: A Rapid, Sensitive and Accurate Tool
for Mapping RNA-seq Reads to Transcriptomes

RAPMAP
RAPMAD

RAPLAP

RAPMAT

RAPTAP

http://bioinformatics.oxfordjournals.org/content/32/12/i192.full.pdfPaper:
 (appeared at ISMB 16)

co-authors (students): Avi Srivastava, Hirak Sarkar, Nitish Gupta

https://github.com/COMBINE-lab/RapMap
http://bioinformatics.oxfordjournals.org/content/32/12/i192.full.pdf

The suffix array allows us to encode / find the NIPs dynamically (and guided by the
length of matching context)

Allows us to efficiently deal with intervals of exact matches (efficient).

Length of context changes dynamically with quality of data (errors).

RapMap Index

Generalized suffix array on transcriptome ($ character separating transcripts)

Hash from k-mers to SA intervals (for speed) (can be dense or minimum perfect hash)

Very fast bit-vector rank — rank9*— allow constant time access to transcript start
positions in generalized suffix array

*Sebastiano Vigna. Broadword implementation of rank/select queries. In Proc. InternationalConference on Experimental Algorithms, WEA’08, pages 154–168, 2008

Benefits of this indexing structure

Moving from mapping to full alignment becomes very efficient (ongoing work).

The suffix array allows us to encode / find the NIPs dynamically (and guided by the
length of matching context)

Allows us to efficiently deal with intervals of exact matches (efficient).

Length of context changes dynamically with quality of data (errors).

RapMap Index

Generalized suffix array on transcriptome ($ character separating transcripts)

Hash from k-mers to SA intervals (for speed) (can be dense or minimum perfect hash)

Very fast bit-vector rank — rank9*— allow constant time access to transcript start
positions in generalized suffix array

*Sebastiano Vigna. Broadword implementation of rank/select queries. In Proc. InternationalConference on Experimental Algorithms, WEA’08, pages 154–168, 2008

Benefits of this indexing structure

Moving from mapping to full alignment becomes very efficient (ongoing work).

Technical details in bonus slides if we have time
(and if you’re curious)

Simulated Data

• Simulated Data using flux-simulator (configs are in
the paper)

• Analysis on 48Million (76bp) PE reads mapped to
human transcriptome;

• Comparison of 4 tools Bowtie2, STAR and RapMap,
kallisto*.

Quasi-mapping is Fast

Can map 75 million paired-end reads (76 bp) to the human
transcriptome in matter of minutes; even with few threads.

Note: High degree of multi-mapping and inability to report top “stratum” means Bowtie2 is often
reporting more than the “best” mapping (though it’s commonly used in this context).

Quasi-mapping is Accurate

TP = True transcript of origin was in the set returned by the method

FP = Mappings were returned for the read, none of which were to the true
transcript

FN = Read is un-mapped, but derives from the transcriptome

Hits per read = Avg. # of mappings returned for the reads
 How many extra mappings did we report?

Bowtie 2: BWT-based aligner

Kallisto: dBG-based pseudoaligner

RapMap: SA-based quasi-mapper

STAR: SA-based aligner

Experimental Data
• Analysis on 25Million (76bp) PE reads mapped to

human transcriptome;

• Comparison of 4 tools Bowtie2, STAR, RapMap and
kallisto.

• Every method reports a tuple .

• Concordance: if tuple is exactly same.

(r, (ti, tj))

Quasi-mapping and Alignment Agree Well

A tuple consists of a read id and set of transcripts e.g. (ri, {t1, t2, t6})

Two methods agree on the mappings of a read if they return the same tuple;
otherwise they disagree

Quasi-mapping and Alignment Agree Well

Mappers agree with Aligners, at least as
often as aligners agree with eachother.

A tuple consists of a read id and set of transcripts e.g. (ri, {t1, t2, t6})

Two methods agree on the mappings of a read if they return the same tuple;
otherwise they disagree

Bonus slides

Move from left to right along read, until we find a k-mer with non-empty SA
interval.

Compute Maximum Mappable Prefix (MMP) starting with this k-mer —
logarithmic in k-mers SA interval

An algorithm for quasi-mapping

Compute NIP of this MMP — (fast) linear in read length

An algorithm for quasi-mapping

Compute NIP of this MMP — (fast) linear in read length

intuitively: NIP jumps you to the next exon boundary overlapping the read (need
not be an actual exon boundary)

An algorithm for quasi-mapping

Produces a set of disjoint hits over each query (read).

A hit is a tuple — (query offset, orientation, length, SA-interval)

Mappings are determined by a consensus mechanism over hits:

• default: a read maps to a transcript if that transcript
appears in every hit for that read.

An algorithm for quasi-mapping

• other (stricter or looser) mechanisms are trivial to
enforce (e.g. co-linearity of hits wrt read & reference).

https://github.com/COMBINE-lab/rapclustGitHub repository:

RapClust: Fast, Lightweight Clustering of de novo
Transcriptomes using Fragment Equivalence Classes

De novo transcriptome clustering

https://arxiv.org/abs/1604.03250Paper:

https://github.com/COMBINE-lab/rapclust
https://arxiv.org/abs/1604.03250

Uses the fragment equivalence classes discussed above to cluster
contigs in de novo assemblies.

This leads to improved downstream analysis (e.g. DE calls)

RapClust: clustering contigs in de novo assemblies

Time including quantification (4 threads)

Time excluding quantification

RapClust is fast

RapClust is Fast & Lightweight

Time & Space comparison of RapClust with Corset, for all phases (raw
reads through quantified clusters — using 4 threads).

Time comparison of RapClust (RC), Corset (CT), and CD-HIT EST (CD)
for just clustering (using 1 thread).

Not having to output / rely on BAM files means the space footprint of
RapClust is orders of magnitude smaller than that of Corset

Variation of Information# distance between the true clustering
and the clustering computed by each method (lower is better).

#: Meila, M. (2007). "Comparing clusterings—an information based distance". Journal of Multivariate Analysis 98 (5): 873–895.

RapClust is accurate

VI Distance RapClust CORSET CD-HIT EST

Chicken 0.127 0.191 2.01

Human 0.712 0.735 1.24

Yeast 0.176 0.178 0.216

F1-Score RapClust CORSET CD-HIT EST*

Chicken 97.17 95.02 13.27

Human 72.23 70.58 23.97

Yeast 46.24 45.40 21.48

F1-Score of correct classification (i.e. co-clustering) of contigs from
the same gene (higher is better).

*Note: RapClust & CORSET only predict clusters on an expressed subset of the
data; CD-HIT EST is not directly comparable.

Yeast Human

Chicken

RapClust improves differential expression testing

Trends continue, even with “noisy” transcriptomes

Include “noise” reads from unspliced / nascent transcripts.

